Network Monitoring Compliance Database

By: Harrison Brown

Problem

- On a large computer network like the one at UC Merced, security gets harder with the number of devices connected
- Some kind of monitoring system is needed to secure the network
- For this project, the task was to create a monitoring system that keeps track of device metadata and device manufacturer
- This system needs to stay up to date and store data

Solution: In Three Parts

- 1. Getting connected devices
- 2. An SQL database
- 3. Periodic updates

Getting Connected Devices

- A list of unique device addresses (MAC addresses) was retrieved from the Address Resolution Protocol (ARP) tables of a network switch
- ARP table was downloaded by running commands over a remote terminal (SSH) and parsing the output

Total number of ARP entries: 542 (In all VRFs)

	IP Address	MAC Address	Туре	Age	Port/
					Port (Vpls-Id, Vlan)/
					Vpls-Id:Peer
1	169.236.138.120	e4e7.4903.507c	Dynamic	1	2/1
2	10.42.3.80	cc4e.24f4.61e8	Dynamic	2	2/7
3	169.236.138.129	None	Pending	Θ	v1138
4	169.236.138.131	None	Pending	Θ	v1138
5	169.236.138.132	None	Pending	Θ	v1138
6	10.42.3.90	cc4e.24f3.e0a8	Dynamic	Θ	1/9
7	169.236.146.150	None	Pending	Θ	v1146
8	10.42.3.100	cc4e.24f4.6a28	Dynamic	Θ	2/9
9	10.42.3.110	cc4e.24d1.5880	Dynamic	2	2/9
10	10.42.3.111	cc4e.24d1.5200	Dynamic	Θ	2/9
11	169.236.138.156	04bd.88ca.7cd4	Dynamic	2	2/1
12	169.236.138.160	0014.a002.18a3	Dynamic	1	2/1
13	169.236.50.3	cc4e.2493.d800	Dynamic	Θ	1/17
14	169.236.50.13	None	Pending	Θ	v1050
15	169.236.146.193	a0ce.c8e3.71ef	Dynamic	1	2/7
16	169.236.138.184	3ccd.3661.6f2c	Dynamic	2	2/1
17	169.236.50.36	None	Pending	Θ	v1050
18	169.236.50.41	None	Pending	Θ	v1050

An ARP table holds a device's network address (IP) and unique device address (MAC). The example to the left is from a network switch.

Using Device Addresses to find the Manufacturer

- Each device manufacturer found use an IEEE MAC address prefix table
- This table will tell you organizational identifier is owned by which company

The SQL Database

- The specific database used was an installation of Oracle Database installed on a virtual machine connected to the university network
- The ARP table was in text format so I made use of external tables, an oracle feature for querying raw text files

MAC	∲ IP	MANUFACTURER	& MODIFIED_AT	FOUND_AT
1 e0:db:55:23:ab:52	169.236.151.201	Dell Inc.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
2 00:19:b9:b5:97:a5	169.236.151.202	Dell Inc.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
з 00:19:b9:b5:b5:0a	169.236.151.211	Dell Inc.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
4 08:00:37:42:a9:3b	169.236.151.250	FUJI-XEROX CO. LTD.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
5 cc:4e:24:93:d8:00	169.236.152.3	Brocade Communications Systems LLC	25-FEB-21 05.52.46.384687000	AM 20-FEB-21 05
6 cc:4e:24:93:d8:00	169.236.144.3	Brocade Communications Systems LLC	20-FEB-21 06.59.10.137695000	PM 20-FEB-21 05
7 cc:4e:24:93:d8:00	169.236.136.3	Brocade Communications Systems LLC	25-FEB-21 01.47.17.104836000	AM 20-FEB-21 05
8 cc:4e:24:93:d8:00	169.236.128.3	Brocade Communications Systems LLC	20-FEB-21 06.59.10.137695000	PM 20-FEB-21 05
9 24:4b:fe:59:52:45	169.236.152.60	ASUSTek COMPUTER INC.	26-FEB-21 11.07.26.018187000	AM 20-FEB-21 05
10 78:7b:8a:c5:99:b8	169.236.136.92	Apple, Inc.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
11 b8:ca:3a:bc:c2:91	169.236.152.122	Dell Inc.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
12 64:00:6a:5b:2d:9e	169.236.144.107	Dell Inc.	26-FEB-21 10.52.24.496669000	AM 20-FEB-21 05
13 d8:cb:8a:c1:76:21	169.236.152.141	Micro-Star INTL CO., LTD.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
14 54:42:49:e2:3e:fb	169.236.136.112	Sony Corporation	26-FEB-21 11.07.26.018187000	AM 20-FEB-21 05
15 2c:f0:5d:1b:9c:8e	169.236.144.132	Micro-Star INTL CO., LTD.	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
16 ac:16:2d:08:11:7a	169.236.144.140	Hewlett Packard	26-FEB-21 10.57.25.115777000	AM 20-FEB-21 05
17 3c:70:59:02:6e:3d	169.236.136.131	MakerBot Industries	26-FEB-21 11.07.26.018187000	AM 20-FEB-21 05
18 40:61:86:e1:05:86	169.236.128.118	MICRO-STAR INT'L CO.,LTD	26-FEB-21 11.12.27.099103000	AM 20-FEB-21 05
10 dlibaid0ialifhiba	160 336 136 147	Dall The	36 EED 31 00 33 07 730606000	AM 20 EEP 21 0E

Periodic Updates

- Devices are always connecting and disconnecting from the wifi, so updating the data is important
- A simple but important part of the project was keeping the database up to date
- This was done by running scripts in a cron job which allows for code to be run at any interval

Issues

- Automating shell commands
 - I basically needed to run a terminal inside a remote terminal and enter passwords without actually entering them with my keyboard
 - The solution I found was to use a scripting language called Expect that allocates a pseudo terminal that will automatically type passwords and execute commands for me.

What I learned

• Oracle

- How to install an Oracle database
- Oracle specific SQL features
- MAC address prefixes
- Over complicated solutions are always bad
 - I started out by writing way too much code
 - I received one tip that greatly reduced the complexity of my solution

What Next?

- Portability
 - The project installation is quite involved and is difficult to move to another computer
- Moving beyond bash scripts
 - Many people love bash scripts but they can be buggy and slightly unreliable compared to a fully fledged programming language
 - A lot of this project was written in bash and would benefit from a re-write in a more reliable language
- Other scheduling programs for periodic updates
 - I used cron jobs but there are other options
 - Systemd timers or the Oracle Job Scheduler are two options that might be more flexible for different scheduling needs
- A front-end web interface

Questions?

Image Sources:

- https://medium.com/@lakshanmamalgaha/what-is-a-mac-address-and-why-you-should-know-about-it-9f970b3ba3fd
- <u>https://tophat.network/networking/</u>
- https://www.stackery.io/blog/using-relational-databases-with-serverless-functions